Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Glob Chang Biol ; 30(4): e17279, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619007

There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.


Solar Energy , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Climate Change , Environmental Pollution , Weather
2.
Photochem Photobiol Sci ; 23(4): 629-650, 2024 Apr.
Article En | MEDLINE | ID: mdl-38512633

This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.


Plastics , Water Pollutants, Chemical , Humans , Plastics/toxicity , Ecosystem , Ultraviolet Rays , Climate Change , Water Pollutants, Chemical/analysis
3.
Photochem Photobiol Sci ; 18(3): 717-746, 2019 Mar 01.
Article En | MEDLINE | ID: mdl-30810561

This assessment summarises the current state of knowledge on the interactive effects of ozone depletion and climate change on aquatic ecosystems, focusing on how these affect exposures to UV radiation in both inland and oceanic waters. The ways in which stratospheric ozone depletion is directly altering climate in the southern hemisphere and the consequent extensive effects on aquatic ecosystems are also addressed. The primary objective is to synthesise novel findings over the past four years in the context of the existing understanding of ecosystem response to UV radiation and the interactive effects of climate change. If it were not for the Montreal Protocol, stratospheric ozone depletion would have led to high levels of exposure to solar UV radiation with much stronger negative effects on all trophic levels in aquatic ecosystems than currently experienced in both inland and oceanic waters. This "world avoided" scenario that has curtailed ozone depletion, means that climate change and other environmental variables will play the primary role in regulating the exposure of aquatic organisms to solar UV radiation. Reductions in the thickness and duration of snow and ice cover are increasing the levels of exposure of aquatic organisms to UV radiation. Climate change was also expected to increase exposure by causing shallow mixed layers, but new data show deepening in some regions and shoaling in others. In contrast, climate-change related increases in heavy precipitation and melting of glaciers and permafrost are increasing the concentration and colour of UV-absorbing dissolved organic matter (DOM) and particulates. This is leading to the "browning" of many inland and coastal waters, with consequent loss of the valuable ecosystem service in which solar UV radiation disinfects surface waters of parasites and pathogens. Many organisms can reduce damage due to exposure to UV radiation through behavioural avoidance, photoprotection, and photoenzymatic repair, but meta-analyses continue to confirm negative effects of UV radiation across all trophic levels. Modeling studies estimating photoinhibition of primary production in parts of the Pacific Ocean have demonstrated that the UV radiation component of sunlight leads to a 20% decrease in estimates of primary productivity. Exposure to UV radiation can also lead to positive effects on some organisms by damaging less UV-tolerant predators, competitors, and pathogens. UV radiation also contributes to the formation of microplastic pollutants and interacts with artificial sunscreens and other pollutants with adverse effects on aquatic ecosystems. Exposure to UV-B radiation can decrease the toxicity of some pollutants such as methyl mercury (due to its role in demethylation) but increase the toxicity of other pollutants such as some pesticides and polycyclic aromatic hydrocarbons. Feeding on microplastics by zooplankton can lead to bioaccumulation in fish. Microplastics are found in up to 20% of fish marketed for human consumption, potentially threatening food security. Depletion of stratospheric ozone has altered climate in the southern hemisphere in ways that have increased oceanic productivity and consequently the growth, survival and reproduction of many sea birds and mammals. In contrast, warmer sea surface temperatures related to these climate shifts are also correlated with declines in both kelp beds in Tasmania and corals in Brazil. This assessment demonstrates that knowledge of the interactive effects of ozone depletion, UV radiation, and climate change factors on aquatic ecosystems has advanced considerably over the past four years and confirms the importance of considering synergies between environmental factors.


Adaptation, Biological , Aquatic Organisms/physiology , Climate Change , Ozone Depletion , Ultraviolet Rays , Animals , Aquaculture , Aquatic Organisms/radiation effects , Ecosystem , Environmental Pollution/adverse effects , Environmental Pollution/analysis , Fishes/physiology , Fresh Water/analysis , Ice Cover/chemistry , Oceans and Seas , Photosynthesis , Stratospheric Ozone/analysis , Ultraviolet Rays/adverse effects , Zooplankton/physiology
4.
Photochem Photobiol Sci ; 14(1): 108-26, 2015 Jan.
Article En | MEDLINE | ID: mdl-25388554

Interactions between climate change and UV radiation are having strong effects on aquatic ecosystems due to feedback between temperature, UV radiation, and greenhouse gas concentration. Higher air temperatures and incoming solar radiation are increasing the surface water temperatures of lakes and oceans, with many large lakes warming at twice the rate of regional air temperatures. Warmer oceans are changing habitats and the species composition of many marine ecosystems. For some, such as corals, the temperatures may become too high. Temperature differences between surface and deep waters are becoming greater. This increase in thermal stratification makes the surface layers shallower and leads to stronger barriers to upward mixing of nutrients necessary for photosynthesis. This also results in exposure to higher levels of UV radiation of surface-dwelling organisms. In polar and alpine regions decreases in the duration and amount of snow and ice cover on lakes and oceans are also increasing exposure to UV radiation. In contrast, in lakes and coastal oceans the concentration and colour of UV-absorbing dissolved organic matter (DOM) from terrestrial ecosystems is increasing with greater runoff from higher precipitation and more frequent extreme storms. DOM thus creates a refuge from UV radiation that can enable UV-sensitive species to become established. At the same time, decreased UV radiation in such surface waters reduces the capacity of solar UV radiation to inactivate viruses and other pathogens and parasites, and increases the difficulty and price of purifying drinking water for municipal supplies. Solar UV radiation breaks down the DOM, making it more available for microbial processing, resulting in the release of greenhouse gases into the atmosphere. In addition to screening solar irradiance, DOM, when sunlit in surface water, can lead to the formation of reactive oxygen species (ROS). Increases in carbon dioxide are in turn acidifying the oceans and inhibiting the ability of many marine organisms to form UV-absorbing exoskeletons. Many aquatic organisms use adaptive strategies to mitigate the effects of solar UV-B radiation (280-315 nm), including vertical migration, crust formation, synthesis of UV-absorbing substances, and enzymatic and non-enzymatic quenching of ROS. Whether or not genetic adaptation to changes in the abiotic factors plays a role in mitigating stress and damage has not been determined. This assessment addresses how our knowledge of the interactive effects of UV radiation and climate change factors on aquatic ecosystems has advanced in the past four years.


Aquatic Organisms/physiology , Ecosystem , Ultraviolet Rays , Animals , Aquatic Organisms/drug effects , Fishes/physiology , Mammals/physiology , Reactive Oxygen Species/metabolism
5.
Mar Drugs ; 10(4): 775-792, 2012 Apr.
Article En | MEDLINE | ID: mdl-22690143

Several marine and freshwater diatoms produce polyunsaturated aldehydes (PUA) in wound-activated processes. These metabolites are also released by intact diatom cells during algal blooms. Due to their activity in laboratory experiments, PUA are considered as potential mediators of diatom-bacteria interactions. Here, we tested the hypothesis that PUA mediate such processes in a close-to-field mesocosm experiment. Natural plankton communities enriched with Skeletonema marinoi strains that differ in their PUA production, a plankton control, and a plankton control supplemented with PUA at natural and elevated concentrations were observed. We monitored bacterial and viral abundance as well as bacterial community composition and did not observe any influence of PUA on these parameters even at elevated concentrations. We rather detected an alternation of the bacterial diversity over time and differences between the two S. marinoi strains, indicating unique dynamic bacterial communities in these algal blooms. These results suggest that factors other than PUA are of significance for interactions between diatoms and bacteria.


Aldehydes/metabolism , Bacteria/metabolism , Diatoms/metabolism , Phytoplankton/metabolism , Biota , Eutrophication/physiology , Marine Biology , Viruses/metabolism
6.
J Phycol ; 45(1): 46-53, 2009 Feb.
Article En | MEDLINE | ID: mdl-27033644

The cosmopolitan bloom-forming diatom Skeletonema marinoi Sarno et Zingone is known to produce toxic polyunsaturated aldehydes (PUAs) in response to cell damage that can affect a diverse suite of organisms, including grazing species and competitor plankton species. The production of PUAs in nine different S. marinoi strains isolated at three different times of the year (spring, summer, and autumn) was assessed in relation to the predominant conditions at the time of isolation from Gullmar Fjord, Skagerrak. During the initial stages of growth, PUA production potential of S. marinoi was generally the highest in summer strains, although there was a substantial variation among strains isolated at the same time. Spring strains, however, showed a strong capacity for increased PUA production potential in later stage cultures with diminishing nutrient levels, reaching amounts similar to those observed in summer strains. In contrast, PUA production potentials of summer and autumn strains did not change significantly from the original values. There is negligible grazing pressure during the spring bloom in Gullmar Fjord, but a potential for high competition for resources, such as nutrients, toward the later stages of the bloom. In contrast, grazing pressure is much greater during summer and autumn, and there may also be nutrient limitation at this time. The PUA production potentials of S. marinoi appear to reflect the ecological conditions at the time of isolation with higher production potentials in strains isolated when conditions were likely to be less beneficial for survival.

7.
J Photochem Photobiol B ; 84(2): 111-8, 2006 Aug 01.
Article En | MEDLINE | ID: mdl-16545575

To estimate the inhibitory effect of the changing UVB radiation (UVBR, 280-315nm) on earth's ecosystems, an understanding of its wavelength dependency is needed. The tool used for these estimations is the biological weighting function (BWF), whereby the inhibition of different wavelengths is calculated. BWFs were determined for three algae species from different classes, Phaeodactylum tricornutum (Bacillariophyceae), Dunaliella tertiolecta (Chlorophyceae) and Rhodomonas sp. (Cryptophyceae), using polychromatic irradiation, where the UVBR spectra were varied with cut-off filters. For each alga, BWFs were determined for two photosynthetic parameters; the quantum yield measured as fluorescence from Photo System II in a pulse-amplitude-modulation (PAM) fluorometer, and the fixation of (14)C-labelled carbon dioxide. The BWFs were calculated with the Rundel method, using the radiation data between 270 and 360nm with 1nm resolution. The results show that the UVBR damages were generally higher when using the carbon fixation measurements than when measuring with the PAM technique. When using PAM, P. tricornutum in particular had a sensitivity intermediate between the sensitive Rhodomonas sp. and the more tolerant D. tertiolecta, but was as sensitive as, or even more sensitive, than Rhodomonas sp. when using carbon fixation. D. tertiolecta was shown to be less sensitive when using both techniques and the inhibition of its photosynthesis was almost as high when using PAM as when using carbon fixation. We concluded that, although the PAM technique has advantages such as being cleaner and easier to use, it is unable to substitute the carbon fixation measurements. Not only are the algae less sensitive when measured with PAM than they are when measured as carbon fixation, the relationship between the effects on the algae measured with the two techniques also differs. As fixation of carbon dioxide integrates a larger part of the photosynthetic machinery, it should be favoured as a measure of photosynthesis.


Eukaryota/radiation effects , Photosynthesis/radiation effects , Ultraviolet Rays , Eukaryota/physiology , Species Specificity
...